Tecnologia Meccanica e Qualità 29/08/2019

QUESITO FONDERIA (9 PUNTI)

Il modello in Figura 1 viene utilizzato per la realizzazione di un pezzo in acciaio mediante fonderia in terra. Dati geometrici: a = 40 cm, b = 30 cm, c = 50 cm, d = 40 cm, e = 24 cm, h = 18 cm, l = 19,7 cm. Dimensioni semistaffe: altezza = 45 cm, larghezza = 100 cm, profondità = 100 cm.

- a) Il modello viene diviso in due geometrie elementari dal piano di separazione delle staffe.
 Si calcoli il modulo termico di tali geometrie. Il piano di separazione delle staffe (PdS) è visibile in Figura 1.
- b) Sapendo che il coefficiente di ritiro è $r=1,3\,\%$, si calcoli l'altezza effettiva h' del grezzo di fonderia.
- c) Verrà effettuata una colata in piano con sistema pressurizzato avente Sc:SD:SA=4:2:1 coefficiente di perdita di carico pari a 0,5. Dopo opportune modifiche geometriche, il volume della cavità compreso di sistema di alimentazione (materozza a cielo aperto disposta sopra la cavità prismatica), ma senza considerare il sistema di colata, è di 7 · 10⁴ cm³ e risulta distribuito al 75% staffa superiore. Avendo circa nella disposizione attacchi di colata preformati a sezione circolare di diametro 40 mm, si calcoli il numero minimo di attacchi necessario per avere un tempo di riempimento di 25 s.

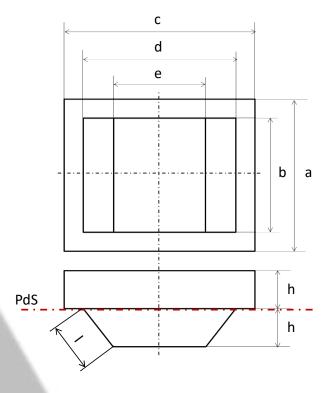


Figura 1. Disegno tecnico del modello

QUESITO QUALITÀ (7,5 PUNTI)

Per il monitoraggio di un processo di estrusione si misura a campione lo spessore di parete dell'estruso, effettuando 10 misure ogni giorno. Sulla base di dati storici, si sa che lo spessore di parete è distribuito secondo una normale con media $\mu=15$ mm e deviazione standard $\sigma=1,4$ mm.

- a) Si calcolino i limiti di controllo di una carta \bar{X} per il monitoraggio statistico dello spessore medio di parete con una probabilità di falso allarme pari al 1%.
- b) Qual è il numero medio di campioni prima di un falso allarme corrispondente ad una carta per la media avente limiti di controllo LCS = 16,235 mm e LCI = 13,765 mm? (si consideri n = 10).
- c) Utilizzando i limiti di controllo indicati al punto b, si calcoli il numero medio di campioni prima di segnalare un aumento dello spessore medio pari a 0,5 unità di deviazione standard della media di processo.
- d) Qual è la dimensione campionaria che permette di individuare con probabilità 50% uno spostamento della media $\Delta\mu=1,5$ mm al primo campione successivo allo spostamento? (si consideri k=3).
- e) Ipotizzando che con l'attuale dimensione campionaria n=10 il valore campionario del range medio sia $\bar{R}=4.5$ mm, si calcolino i nuovi limiti di controllo per la sola carta R qualora, per ridurre i tempi di misura, si volesse adottare campioni di numerosità n=5 (si consideri k=3).

QUESITO DEFORMAZIONE (7 PUNTI)

Un'azienda produce profilati in alluminio (carico di snervamento a caldo Y = 50 MPa) come in Figura 2 (sinistra) tramite estrusione diretta a caldo. La sezione finale di ogni singolo profilato misura $S_f = 120 \text{ mm}^2$.

- a) La filiera principale dell'azienda prevede l'estrusione contemporanea di 4 profilati, partendo da billette cilindriche a sezione di diametro $D_0 = 70 \text{ mm}$, come in Figura 2 al centro. La velocità dei profilati estrusi è $v_f = 3 \text{ m/s}$. Si calcolino il rapporto di estrusione, la forza di estrusione in presenza di attrito e la relativa potenza di estrusione considerando i coefficienti sperimentali: a = 0.8 e b = 1.3.
- b) Un secondo estrusore a caldo è adibito alla produzione dello stesso modello di profilati, ma in questo caso la billetta cilindrica di partenza ha sezione con diametro $D_0 = 50 \ \mathrm{mm}$ e viene estrusa in un singolo profilato, come in Figura 2 a destra. Si calcoli il lavoro ideale di deformazione per estrudere un volume $V = 5 \cdot 10^6 \ \mathrm{mm}^3$ di alluminio. Si ipotizzi attrito nullo.
- c) Facendo riferimento al processo di estrusione del punto b ($D_0 = 50 \text{ mm}$, $S_f = 120 \text{ mm}^2$), sapendo che una quantità di alluminio ($V_{scarto} = 1.5 \cdot 10^6 \text{ mm}^3$) rimane nella camera di estrusione e nella matrice come scarto a valle della troncatura di fine processo, si calcoli la lunghezza iniziale della billetta che permette di ottenere un profilato lungo $L_f = 50 \text{ m}$.

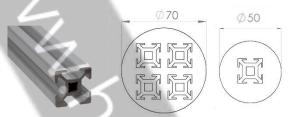


Figura 2. Sinistra, profilato estruso in alluminio; Centro, matrice di estrusione, (domanda a);

Destra: matrice di estrusione (domande b e c).

QUESITO ASPORTAZIONE (6,5 PUNTI)

Si consideri la fase produttiva rappresentata in Figura 3 in cui con lo stesso utensile si realizza la finitura di un componente cilindrico cavo (tubolare) in acciaio mediante l'esecuzione di due operazioni nel seguente ordine: una tornitura cilindrica interna su tutta la lunghezza del pezzo e una sfacciatura della base libera (a destra).

Utilizzando i parametri di lavorazione in Tabella 1, si chiede di:

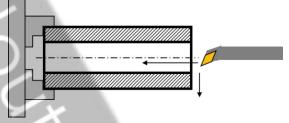


Figura 3. Fase produttiva di riferimento

- a) Determinare il massimo avanzamento che consenta di rispettare un requisito di finitura superficiale sulla superficie cilindrica interna pari a $R_a=0.8\,\mu\text{m}$;
- b) Determinare la pressione minima di serraggio delle griffe sul pezzo per la corretta esecuzione della tornitura cilindrica interna (durante la lavorazione si utilizza un avanzamento f=0.1 mm/giro e una piattaforma autocentrante con 3 griffe, area di contatto griffa-pezzo di 100 mm² e attrito 0,3);
- Determinare le velocità di taglio minima e massima che si avranno durante la sfacciatura.

Tabella 1: parametri di lavorazione

Materiale		Pezzo	-	Utensile	
k _{c0,4}	2900 MPa	Diametro interno iniziale	48 mm	r	1 mm
х	0,29	Diametro esterno	100 mm	k _r	95°
Lavorazione		Lunghezza iniziale	202 mm	k _r '	5°
ap	1 mm				
n	900 giri/min.	100		390	

Tecnologia Meccanica e Qualità

Matricola	Cognome	Nome	Data
	123		29/08/2019

Note:

- **NC*** = Non compilare. Spazio riservato alla correzione.
- <u>Indicare chiaramente</u>: Matricola, Cognome e Nome;
- Riportare in penna tutti i risultati numerici richiesti sul foglio allegato;
- Non è consentito utilizzare libri o dispense;
- È consentito esclusivamente l'uso del formulario e delle tabelle ufficiali del corso;
- Svolgimento 1ora e 30 minuti.

QUESITO FONDERIA (9 punti)

	5	Punti	Valore	Unità di misura	NC*
DOMANDA A	Modulo termico parte superiore	1,5			
DOMANDA A	Modulo termico parte inferiore	2			
DOMANDA B	Altezza effettiva grezzo h'	1			
DOMANDA C	Velocità media efflusso	2			
	Sezione di attacco minima	1,5			
	Numero minimo attacchi	1			

QUESITO QUALITÀ (7,5 punti)

	1	Punti	Valore	Unità di misura	NC*
	Carta \bar{X} : LCI	0,5			
DOMANDA A	Carta \bar{X} : LC	0,5			
	Carta \bar{X} : LCS	0,5			
DOMANDA B	Numero medio di campioni prima di un falso allarme	1,5			
DOMANDA C	Numero medio di campioni prima di segnalare un aumento dello spessore	1,5			
DOMANDA D	Dimensione campionaria	1,5		6	
	Carta R: LCI	0,5			
DOMANDA E	Carta R: LC	0,5			
	Carta R: LCS	0,5			37

QUESITO DEFORMAZIONE (7 punti)

		Punti	Valore	Unità di misura	NC*
DOMANDA A	Rapporto di estrusione	1			
	Forza di estrusione	1			
	Potenza di estrusione	1,5			
DOMANDA B	Lavoro ideale di deformazione	2			
DOMANDA C	Lunghezza iniziale della billetta	1,5			

QUESITO ASPORTAZIONE (6,5 punti)

	7	Punti	Valore	Unità di misura	NC*
DOMANDA A	Avanzamento limite per la validità della relazione di Schmaltz	0,5			
	Avanzamento	1			
DOMANDA B	Pressione minima delle griffe	2			
DOMANDA C	Velocità di taglio minima	1,5			
	Velocità di taglio massima	1,5			

SOLUZIONE

QUESITO FONDERIA

a) Modulo termico.

Il piano di separazione delle staffe divide l'oggetto in due parti: superiore ed inferiore. A seguito il calcolo dei moduli termici delle due parti.

$$V_{superiore} = a \cdot c \cdot h = 40 \cdot 50 \cdot 18 = 36000 \text{ cm}^3$$

$$S_{superiore} = a \cdot c \cdot 2 - b \cdot d + 2(a + c)h = 40 \cdot 50 \cdot 2 - 30 \cdot 40 + 2(40 + 50)18 = 6040 \text{ cm}^2$$

$$M_{superiore} = \frac{V_{superiore}}{S_{superiore}} = \frac{36000}{6040} = 5,96 \text{ cm}$$

$$V_{inferiore} = \frac{d + e}{2} \cdot h \cdot b = \frac{40 + 24}{2} \cdot 18 \cdot 30 = 17280 \text{ cm}^3$$

$$S_{inferiore} = (e + 2 \cdot \ell) \cdot b + 2 \cdot \frac{d + e}{2} \cdot h = (24 + 2 \cdot 19,7) \cdot 30 + (40 + 24) \cdot 18 = 3054 \text{ cm}^2$$

$$M_{inferiore} = \frac{V_{inferiore}}{S_{inferiore}} = \frac{17280}{3054} = 5,66 \text{ cm}$$

b) Dimensioni grezzo.

La dimensione h' del grezzo sarà:

$$h' = \frac{h}{(1+r)} = \frac{18}{(1+0.013)} = 17.77 \text{ cm}$$

c) Dimensionamento sistema di colata.

Per ricavare il numero di attacchi necessari a garantire il tempo di riempimento, occorre conoscere la sezione di strozzatura S_A in grado di garantire un'adeguata portata.

$$S_A \ge \frac{Q}{v}$$

Da questo, per garantire un tempo massimo di riempimento pari a 25 s, la portata minima dovrà essere pari a:

$$Q = \frac{Vol}{t} = \frac{70000}{25} = 2800 \frac{\text{cm}^3}{\text{s}}$$

La velocità di efflusso media si ricava come:

$$v = c\sqrt{2gH_m}$$

con altezza media di colata pari a:

$$H_m = \frac{1}{\left(\frac{r'}{\sqrt{h_i}} + \frac{r''}{\sqrt{h_m}}\right)^2} = \frac{1}{\left(\frac{0.25}{\sqrt{45}} + \frac{0.75}{\sqrt{11.25}}\right)^2} = 14,69 \text{ cm}$$

essendo:

$$h_m = \left(\frac{\sqrt{h_i}}{2} + \frac{\sqrt{h_f}}{2}\right)^2 = \left(\frac{\sqrt{45}}{2} + \frac{\sqrt{0}}{2}\right)^2 = 11,25 \text{ cm}$$

La velocità media di efflusso v nella sezione di strizione vale pertanto:

$$v = c\sqrt{2gH_m} = 0.5\sqrt{2 \cdot 9.81 \cdot \frac{14.69}{100}} = 0.85\frac{\text{m}}{\text{s}}$$

(La velocità è quindi accettabile.)

Si ottiene:

$$S_{A,min} = \frac{Q}{v} = \frac{2800}{0.85 \cdot 100} = 32,94 \text{ cm}^2$$

Poiché sono disponibili a magazzino attacchi di diametro $D_A=40~\mathrm{mm}=4~\mathrm{cm}$, l'area s_A del singolo attacco di colata risulta:

$$s_A = \frac{\pi}{4}D_A^2 = \frac{\pi}{4}4^2 = 12,57 \text{ cm}^2$$

Conseguentemente, sono necessari un numero di attacchi di colata N pari a:

$$N = \left\lceil \frac{S_{A,\text{min}}}{s_A} \right\rceil = \left\lceil \frac{32,94}{12,57} \right\rceil = \lceil 2,62 \rceil = 3$$

QUESITO QUALITÀ

a. Limiti di controllo della carta \bar{X} .

Dato $\alpha=0,01$, è possibile ricavare da tabella $k=z_{\alpha/2}=2,58$ per approssimazione al valore più prossimo al valore esatto $\Phi(z)=1-\frac{\alpha}{2}=0,995$. Ne risultano i seguenti limiti di controllo: Carta \overline{X} :

$$LCS = \mu + k \frac{\sigma}{\sqrt{n}} = 15 + 2,58 \frac{1,4}{\sqrt{10}} = 16,142 \text{ mm}$$

$$LCS = \mu = 15 \text{ mm}$$

$$LCI = \mu - k \frac{\sigma}{\sqrt{n}} = 15 - 2,58 \frac{1,4}{\sqrt{10}} = 13,858 \text{ mm}$$

b. Numero medio di campioni prima di un falso allarme.

Dati LCS = 16,235 mm e LCI = 13,765 mm è possibile ricavare l'errore di primo tipo come:

$$\alpha = \Phi\left(\frac{LCI - \mu}{\frac{\sigma}{\sqrt{n}}}\right) + 1 - \Phi\left(\frac{LCS - \mu}{\frac{\sigma}{\sqrt{n}}}\right) =$$

$$= \Phi\left(\frac{13,765 - 15}{\frac{1,4}{\sqrt{10}}}\right) + 1 - \Phi\left(\frac{16,235 - 15}{\frac{1,4}{\sqrt{10}}}\right) = 0,00528$$

Il numero medio di campioni prima di un falso allarme è $ARL(H0) = \frac{1}{\alpha} = \frac{1}{0,00528} = 189,394$.

c. Numero medio di campioni prima di segnalare un aumento dello spessore medio.

Siccome la deviazione della media è espressa in unità di deviazione standard della media, l'errore di secondo tipo è calcolabile come segue:

$$\beta = \Phi\left(\frac{LCS - \mu - \delta_{\bar{X}} \cdot \frac{\sigma}{\sqrt{n}}}{\frac{\sigma}{\sqrt{n}}}\right) - \Phi\left(\frac{LCI - \mu - \delta_{\bar{X}} \cdot \frac{\sigma}{\sqrt{n}}}{\frac{\sigma}{\sqrt{n}}}\right)$$

$$\beta = \Phi(k - \delta_{\bar{X}}) - \Phi(-k - \delta_{\bar{X}})$$

dove $\delta_{\bar{X}} = 0.5$. Essendo i limiti di controllo del punto 2 simmetrici, si ricava:

$$k = \frac{LCS - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{16,235 - 15}{\frac{1,4}{\sqrt{10}}} = 2,79$$

Da cui:

$$\beta = \Phi(2.79 - 0.5) - \Phi(-2.79 - 0.5) = 0.98849$$

Il numero medio di campioni prima di segnalare un aumento dello spessore medio è ricavabile come

$$ARL(H1) = \frac{1}{1 - \beta} = \frac{1}{1 - 0.98849} = 86.88$$

d. Stima della dimensione campionaria.

Per ricavare la dimensione campionaria nella condizione indicata è possibile usare il metodo di Duncan, da cui, con k=3 e $\Delta\mu=1,5$:

$$n = \left(\frac{k\sigma}{\Delta\mu}\right)^2 = \left(\frac{3\cdot 1.4}{1.5}\right)^2 = 7.84 \cong 8$$

e. Limiti di controllo della carta R.

Dato $\bar{R}=4.5$ mm e $d_2(10)=3.078$, corrispondenti a n=10, e $d_2(5)=2.326$, corrispondente a n=5, si può calcolare il nuovo valore medio del range come:

$$\bar{R}_{new} = \frac{d_2(5)}{d_2(10)}\bar{R} = \frac{2,326}{3,078} \cdot 4,5 = 3,4 \text{ mm}$$

Sempre da tabella si ricava $D_3(5) = 0$ e $D_4(5) = 2,114$, da cui i limiti della carta di controllo R risultano:

$$LCS = D_4(5)\bar{R}_{new} = 2,114 \cdot 3,4 = 7,19 \text{ mm}$$

 $LC = \bar{R}_{new} = 3,4 \text{ mm}$
 $LCS = D_3(5)\bar{R}_{new} = 0 \cdot 3,4 = 0 \text{ mm}$

o, analogamente, considerati $d_3(5) = 0.864$ e k = 3:

$$LCS = \left(1 + k \frac{d_3(5)}{d_2(5)}\right) \bar{R}_{new} = \left(1 + 3 \frac{0,864}{2,326}\right) 3,4 = 7,19 \text{ mm}$$

$$LC = \bar{R}_{new} = 3,4 \text{ mm}$$

$$LCS = \max\left\{0; \left(1 - k \frac{d_3(5)}{d_2(5)}\right) \bar{R}_{new}\right\} = \max\left\{0; \left(1 - 3 \frac{0,864}{2,326}\right) 3,4\right\} = \max\{0; -0,389\} = 0 \text{ mm}$$

QUESITO DEFORMAZIONE

a) Rapporto di estrusione, forza e potenza.

Il rapporto di estrusione, dato dal rapporto fra sezione della billetta e somma delle sezioni dei profilati estrusi, è:

$$R = \frac{A_0}{A_f} = \frac{\pi \cdot \frac{D_0^2}{4}}{4 \cdot S_f} = \frac{\pi \cdot 70^2 / 4}{4 \cdot 120} = 8,0176$$

In estrusione, la forza si calcola come:

$$F = A_0 \cdot p$$

In presenza di attrito, tale pressione viene calcolata tramite la relazione empirica qui riportata:

$$p = Y \cdot (a + b \cdot \ln R)$$

Di conseguenza, la forza di estrusione in presenza di attrito si calcola come:

$$F = \pi \cdot \frac{D_0^2}{4} \cdot Y \cdot (a + b \cdot \ln R) = \pi \cdot \frac{70^2}{4} \cdot 50 \cdot (0.8 + 1.3 \cdot \ln 8.0176) = 674659 \text{ N} \approx 675 \text{ kN}$$

La potenza si ottiene moltiplicando la forza di estrusione per la velocità del pistone.

$$P = F \cdot v_0$$

Il testo tuttavia fornisce il dato relativo alla velocità finale dei profilati estrusi. Vale la legge di conservazione della portata:

$$A_0 \cdot v_0 = A_f \cdot v_f$$

$$v_0 = \frac{A_f}{A_0} \cdot v_f = \frac{v_f}{R} = \frac{3}{8,0176} = 0,3742 \frac{\text{m}}{\text{s}}$$

Quindi la potenza di estrusione si calcola come:

$$P = F \cdot v_0 = 674659 \cdot 0,3742 = 252457 \text{ W} \approx 252 \text{ kW}$$

b) Lavoro ideale di deformazione.

Il lavoro ideale di deformazione si calcola come:

$$L = u \cdot V$$

In condizioni ideali, il lavoro per unità di volume u associato alla deformazione di un materiale perfettamente plastico si calcola come:

$$u = Y \cdot \varepsilon$$

In estrusione:

$$u = Y \cdot \ln \frac{A_0}{A_f} = 50 \cdot \ln \frac{\pi^{50^2/4}}{120} \cdot 10^{-3} = 139,75 \cdot 10^{-3} \frac{J}{\text{mm}^3}$$

Il fattore di conversione 10^{-3} permette la conversione da MPa a $\frac{J}{mm^3}$.

Di conseguenza:

$$L = u \cdot V = 0.13975 \cdot 5 \cdot 10^6 = 0.69875 \cdot 10^6 \text{ J} = 698.75 \text{ kJ}$$

c) Lunghezza iniziale della billetta.

La lunghezza iniziale della billetta si calcola attraverso la conservazione del volume, dove il volume totale di alluminio si calcola sommando il volume di scarto e il volume di materiale che viene effettivamente estruso nel profilato:

$$A_0L_0=V_{tot}$$

$$V_{tot} = V_{scarto} + V_{estruso}$$

Il volume di scarto è dato dal testo, il volume di materiale estruso si calcola come:

$$V_{estruso} = A_f \cdot L_f$$

A questo punto si può calcolare la lunghezza iniziale della billetta:

$$L_0 = \frac{V_{tot}}{A_0} = \frac{V_{scarto} + A_f \cdot L_f}{A_0} = \frac{1,5 \cdot 10^6 + 120 \cdot 50 \cdot 1000}{\pi^{50^2}/_4} = 3819,72 \text{ mm} \approx 3,82 \text{ m}$$

QUESITO ASPORTAZIONE

a) <u>Determinare il massimo avanzamento che consenta di rispettare un requisito di finitura superficiale sulla superficie cilindrica interna pari a Ra = 0,8 µm</u>

Nell'ipotesi di validità della legge di Schmaltz (utensile raccordato), si ricava:

$$f = \sqrt{32 \cdot r \cdot R_a} = \sqrt{\frac{32 \cdot 1 \cdot 0.8}{1000}} = 0.16 \text{ mm/giro}$$

Naturalmente è necessario verificare le ipotesi di validità di tale legge:

$$\begin{cases} f \le 2 r \sin k_r \\ f \le 2 r \sin k_r' \end{cases} \begin{cases} 0.16 \le 2 \cdot 1 \cdot \sin 95^\circ = 1.992 \frac{\text{mm}}{\text{giro}} \to ok \\ 0.16 \le 2 \cdot 1 \cdot \sin 5^\circ = 0.174 \frac{\text{mm}}{\text{giro}} \to ok \end{cases}$$

b) <u>Determinare la pressione minima di serraggio delle griffe sul pezzo per la corretta esecuzione</u> della tornitura cilindrica interna

Per garantire il corretto afferraggio del pezzo il momento resistente M_r deve essere superiore al momento di taglio M_c :

$$M_c \leq M_r$$

$$F_c \cdot \frac{D_f}{2} \le z \cdot \mu \cdot p \cdot A \cdot \frac{D_{afferraggio}}{2}$$

Dove $D_f = D_{interno\ iniziale} + 2 \cdot a_p = 48 + 2 \cdot 1 = 50$ mm.

È quindi necessario determinare la forza di taglio. Usando il metodo della pressione di taglio, si ricava:

$$F_c = k_c \cdot f \cdot a_p = k_{c \cdot 0,4} \cdot \left(\frac{0,4}{f \cdot \sin k_r}\right)^x \cdot f \cdot a_p = 2900 \cdot \left(\frac{0,4}{0,1 \cdot \sin 95^\circ}\right)^{0,29} \cdot 0,1 \cdot 1 = 433,99 \text{ N}$$

Da cui:

$$p \ge \frac{F_c \cdot \frac{D_f}{2}}{z \cdot \mu \cdot A \cdot \frac{D_{afferraggio}}{2}} = \frac{433,99 \cdot \frac{50}{2}}{3 \cdot 0,3 \cdot 100 \cdot \frac{100}{2}} = 2,4 \text{ MPa}$$

c) <u>Determinare le velocità di taglio minima e massima che si avranno durante la sfacciatura.</u>

La lavorazione di sfacciatura della base libera è effettuata con una velocità di rotazione costante (si veda n in tabella).

Poiché la velocità di taglio è legata al numero di giri dalla seguente relazione:

$$v_c = \pi \cdot D \cdot n$$

la velocità minima e massima si avranno in corrispondenza rispettivamente del diametro minimo e di quello massimo lavorati durante l'operazione di sfacciatura, quindi:

$$v_{c,min} = \pi \cdot D_{min} \cdot n = \frac{\pi 50 \cdot 900}{1000} = 141,37 \text{ m/min}$$

$$v_{c,max} = \pi \cdot D_{max} \cdot n = \frac{\pi 100 \cdot 900}{1000} = 282,74 \frac{\text{m}}{\text{min}}$$