Tecnologia Meccanica e Qualità: Testo appello del 23/01/2020

QUESITO FONDERIA (8 PUNTI)

Si vuole produrre il piattello di collegamento tra motrice e rimorchio di autoarticolati. Tale piattello viene realizzato attraverso un ciclo tecnologico che prevede un'operazione di fonderia in forma transitoria seguita da un'asportazione di truciolo necessaria per portare a misura la quota funzionale C relativa all'alloggiamento del perno di collegamento.

<u>Dati geometrici Figura 1</u>: A = 100 mm, B = 500 mm, C = 130 mm, D = 500 mm, E = 150 mm.

- a. Si ricavi la tolleranza sulla quota funzionale C soggetta ad un grado normalizzato IT13.
- b. Si dimensionino le quote B, E e D del modello del pezzo supponendo l'aggiunta di un sovrametallo di 3 mm su tutte le superfici. Si consideri un coefficiente di ritiro in fase solida di 1,15%.
- c. A fine progettazione, il volume del getto è $V=1,2\ dm^3$ e viene alimentato da due materozze identiche a cielo aperto, ciascuna su una delle due metà identiche del pezzo definite dal piano X-X in figura 1. Si verifichi l'adeguatezza della seguente tipologia di materozza cilindrica: modulo termico $M_m=48\ \text{mm}$ e rapporto dimensionale $H_m=0,5\cdot D_m$. Il modulo termico della parte a contatto con la materozza è $M=40\ \text{mm}$. Coefficienti Caine: a=0,1; b=0,03; c=1.

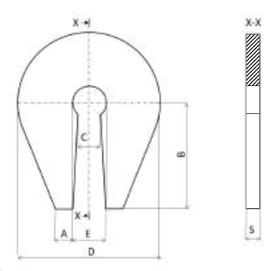


Figura 1. Disegno tecnico quotato del piattello di collegamento.

QUESITO QUALITÀ (7 PUNTI)

Si vuole progettare il monitoraggio di un processo di microtornitura di cilindretti forati per componenti pneumatici in acciaio inox. È noto che il diametro del foro interno è distribuito secondo una normale con media $\mu=8,04$ mm e deviazione standard $\sigma=0,02$ mm.

- a) Qual è la dimensione campionaria che permette di individuare, al primo campione successivo allo spostamento, con probabilità 50% uno spostamento della media $\Delta\mu$ pari a 1,5 volte la deviazione standard? Si consideri k=3.
- b) Effettuando 10 misure del diametro del foro interno ogni due ore, quanto tempo bisogna aspettare, in media, prima che la carta segnali correttamente una variazione del diametro medio pari a $\Delta\mu=0.019$ mm utilizzando una carta di controllo per la media del processo avente limiti di controllo LCS = 8.07 mm e LCI = 8.01 mm? Si consideri un processo che operi senza interruzioni su tre turni giornalieri da 8 ore.
- c) Utilizzando i limiti di controllo LCS = 8,07 mm e LCI = 8,01 mm, si calcoli il numero medio di campioni prima che la carta segnali un falso allarme (si consideri una dimensione campionaria n = 10).
- d) Si calcolino i limiti di controllo di una carta \bar{X} per il monitoraggio statistico del diametro del foro interno dei cilindretti fissando una probabilità di falso allarme pari al 0,8% e dimensione campionaria n=10.
- e) Si calcolino i limiti di controllo di una carta R se si intende ottenere una probabilità di falso allarme $\alpha = 0,0027$, con dimensione campionaria n = 10.

QUESITO DEFORMAZIONE (7 PUNTI)

Un'azienda esegue lavorazioni di fucinatura a stampi piani su dei campioni di rame ricotto avente comportamento incrudente $\sigma = k\varepsilon^n$ caratterizzato da k=315 MPa e n=0,54. Trascurando il fenomeno del barreling si chiede di rispondere alle seguenti richieste:

- a) In una pressa, un massello cilindrico di diametro iniziale $d_0=25~\mathrm{mm}$ e altezza iniziale $h_0=40~\mathrm{mm}$ viene compresso applicando una forza $F=95~\mathrm{kN}$. Come risultato, la sua altezza viene ridotta del 20%. Si calcolino il diametro finale del cilindro, la deformazione e lo sforzo associati. Si chiede inoltre di ricavare il coefficiente di attrito fra cilindro e pressa.
- b) Una seconda pressa lavora in assenza di attrito grazie alla lubrificazione. In tale pressa, un massello cilindrico di altezza iniziale $h_0=40~\mathrm{mm}$ viene compresso ad una altezza finale di 32 mm. Qual è il lavoro specifico di deformazione richiesto?
- c) Nella seconda pressa (quindi in assenza di attrito), si porta a rottura un massello cilindrico con dimensioni iniziali $d_0 = 30 \text{ mm}$ e $h_0 = 50 \text{ mm}$. La rottura avviene ad un'altezza finale $h_f = 31,84 \text{ mm}$. Si calcoli la tensione reale al momento della rottura.

QUESITO ASPORTAZIONE (8 PUNTI)

Un alberino cilindrico avente diametro iniziale $d=20\,\mathrm{mm}$ deve subire una lavorazione di tornitura cilindrica esterna di sgrossatura su tutta la sua lunghezza $l=100\,\mathrm{mm}$, con una profondità di passata $a_p=4\,\mathrm{mm}$ ed un avanzamento $f=0.4\,\mathrm{mm/giro}$. Si consideri un sistema di trascinamento frontare a denti (afferraggio fra le punte). Il materiale da lavorare è un acciaio debolmente legato avente $k_{cs}=650\,\mathrm{Mpa}$. Sono disponibili due inserti UA e UB utilizzabili con tali parametri di taglio, ognuno avente 4 taglienti e con caratteristiche raccolte in Tabella 1. Entrambi gli inserti sono stati testati con due velocità di taglio v_1 e v_2 ottendo rispettivamente una vita utile T_1 e T_2 come da Tabella 1.

Tagliente	Angolo registrazione primario <i>K</i>	Coefficiente x	Costo inserto c _{inserto} (€)	Condizioni lavoro 1		Condizioni lavoro 2	
				Velocità di taglio V1	Vita utile T ₁	Velocità di taglio V2	Vita utile T ₂
UA	42°	0,197	5	290 m/min	15 min	275 m/min	20 min
UB	44°	0,197	4	290 m/min	15 min	275 m/min	20 min

Tabella 1

Si richiede di:

- a. Calcolare la vita utile del singolo tagliente UA lavorando con velocità di taglio $v_c = 280$ m/min.
- b. Calcolare il costo della lavorazione di un pezzo supponendo di lavorare con l'inserto UB alla velocità $v_2=275\,\mathrm{m/min}$. Dati: $t_{cu}=90\,\mathrm{secondi}$, $t_0=1\,\mathrm{min}$, $c_m=90\,\mathrm{e/ora}$, e $c_0=0.5\,\mathrm{e/ora}$. Si trascurino eventuali extracorse.
- c. Tenendo conto della potenza disponibile al mandrino (P_e = 8,1 kW), verificare se il tagliente UA possa essere utilizzato alla velocità v_1 = 290 m/min.

Tecnologia Meccanica e Qualità: Foglio di Consegna

Matricola	Cognome	Nome	Data
	3		23/01/2020

Note:

- Indicare sul foglio di consegna: Matricola, Cognome, Nome;
- NC* = Non compilare. Spazio riservato alla correzione;
- Non è consentito utilizzare libri o dispense;
- È consentito esclusivamente l'uso del formulario e delle tabelle ufficiali del corso;
- Riportare in penna tutti i risultati numerici richiesti;
- Svolgimento 1h30.

QUESITO 1 FONDERIA (8 punti)

	5	Punti	Valore	Unità di misura	NC*
DOMANDA A	Tolleranza	1			
DOMANDA B	Dimensione B-modello	1			
	Dimensione E-modello	1			
	Dimensione D-modello	1			
DOMANDA C	Rapporto volumetrico limite di Caine	1			
	Diametro materozza	2			
	Rapporto volumetrico materozza-getto				

QUESITO 2 QUALITA' (7 punti)

		Punti	Valore	Unità di misura	NC*
DOMANDA A	Dimensione campionaria	1,5	X		
DOMANDA B	Tempo medio prima dell'allarme	1,5	S		
DOMANDA C	Numero medio di campioni prima di un falso allarme	1			
DOMANDA D	Carta \bar{X} : LCS	0,5			
	Carta \bar{X} : LC	0,5		6	
	Carta \bar{X} : LCI	0,5			
DOMANDA E	Carta R: LCS	0,5			
	Carta R: LC	0,5			3
	Carta R: LCI	0,5			

QUESITO 3 DEFORMAZIONE (7 punti)

		Punti	Valore	Unità di misura	NC*
DOMANDA A	Diametro finale	1			
	Deformazione	1			
	Sforzo	1			
	Coefficiente attrito	2			
DOMANDA B	Lavoro specifico	1			
DOMANDA C	Carico di rottura	1			

QUESITO 4 ASPORTAZIONE (8 punti)

	9	Punti	Valore	Unità di misura	NC*
DOMANDA A	Coefficiente C di Taylor	1			
	Coefficiente n di Taylor	1			
	Vita utile	3			
DOMANDA B	Tempo di contatto	X			
	Costo lavorazione al pezzo	2			
DOMANDA C	Forza di taglio	1(
	Potenza di taglio	1			

SOLUZIONE

QUESITO 1 FONDERIA

a. Calcolo tolleranza.

Da tabella:

$$IT13 = 0,63 \, mm$$

b. <u>Dimensionamento modello.</u>

Nel limite delle quote richieste, il dimensionamento del modello e':

$$B' = (B+s) (1+r) = (500+3) (1+0.0115) = [508.785] = 509 mm$$

 $E' = (E-2 \cdot s) (1+r) = (150-6) (1+0.0115) = [145.656] = 145 mm$
 $D' = (D+2 \cdot s) (1+r) = (500+6) (1+0.0115) = [511.819] = 512 mm$

c. Sistema alimentazione

La x della materozza è:

$$x = \frac{M_m}{M} = \frac{48}{40} = 1.2$$

La y_c limite di Caine è quindi pari a:

$$y_c = \frac{a}{x - c} + b = \frac{0.1}{1.2 - 1} + 0.03 = 0.53$$

Sapendo che $H_m = \delta D_m$ si ottiene che:

$$V_{m} = \frac{\pi D_{m}^{2}}{4} H_{m} = \frac{\pi D_{m}^{3}}{4} \delta$$

$$A_{m} = \frac{\pi D_{m}^{2}}{4} + \pi D_{m} H_{m} = \frac{\pi D_{m}^{2}}{4} + \pi D_{m}^{2} \delta$$

$$M_{m} = \frac{\pi D_{m}^{3}}{4} \delta \cdot \frac{4}{\pi D_{m}^{2} (1 + 4\delta)} = \frac{\delta \cdot D_{m}}{(1 + 4\delta)}$$

Dato quindi $M_m = 48 \ mm$, si ricava che:

$$D_m = M_m \cdot \frac{(1+4\delta)}{\delta} = 48 \cdot \frac{(1+4\cdot 0.5)}{0.5} = 288 \ mm$$

La y della materozza è quindi pari a:

$$y = \frac{V_m}{V_p} = \frac{\frac{\pi D_m^3}{4} \delta}{\frac{V_{tot}}{2}} = \frac{\frac{\pi \cdot 288^3}{4} \cdot 0.5}{\frac{1.2 \cdot 10^6}{2}} = 15.64$$

La materozza è quindi adeguata ($y_c < y$).

QUESITO 2 QUALITÀ

a. Stima della dimensione campionaria.

Per ricavare la dimensione campionaria nella condizione indicata è possibile usare il metodo di Duncan. Essendo $\Delta\mu=1,5\sigma$ e con k=3 si ha:

$$n = \left(\frac{k\sigma}{\Delta\mu}\right)^2 = \left(\frac{3}{1.5}\right)^2 = 4$$

b. Tempo medio prima di un allarme corretto.

Essendo la variazione della media espressa come valore assoluto della media, dati LCS = 8,07 mm, LCI = 8,01 mm e n=10, è possibile ricavare l'errore di secondo tipo corrispondente a $\Delta\mu$ = 0,019 mm come:

$$\beta = \Phi\left(\frac{LCS - (\mu + \Delta\mu)}{\frac{\sigma}{\sqrt{n}}}\right) - \Phi\left(\frac{LCI - (\mu + \Delta\mu)}{\frac{\sigma}{\sqrt{n}}}\right) =$$

$$= \Phi\left(\frac{8,07 - (8,04 + 0,019)}{\frac{0,02}{10}}\right) - \Phi\left(\frac{8,01 - (8,04 + 0,019)}{\frac{0,02}{10}}\right) = 0,959$$

Il numero medio di campioni prima di un allarme è

$$ARL(H_1) = \frac{1}{1-\beta} = \frac{1}{1-0.959} = 24.39$$

Siccome le misure a campione sono effettuate ogni due ore in modo continuativo, la variazione della media verrebbe segnalata dopo

$$ATS = 2 \cdot ARL(H_1) = 48,79 \text{ h}$$

c. Numero medio di campioni prima di un falso allarme.

Dati LCS = 8,07 mm, LCI = 8,01 mm e n=3 è possibile ricavare l'errore di primo tipo come:

$$\alpha = \Phi\left(\frac{LCI - \mu}{\frac{\sigma}{\sqrt{n}}}\right) + 1 - \Phi\left(\frac{LCS - \mu}{\frac{\sigma}{\sqrt{n}}}\right) =$$

$$= \Phi\left(\frac{8,01 - 8,04}{\frac{0,02}{\sqrt{3}}}\right) + 1 - \Phi\left(\frac{8,07 - 8,04}{\frac{0,02}{\sqrt{3}}}\right) = 0,009375$$

Il numero medio di campioni prima di un falso allarme è

$$ARL(H0) = \frac{1}{\alpha} = \frac{1}{0,009375} = 106,67$$

d. Limiti di controllo della carta \bar{X} .

Dato $\alpha=0{,}008$ e n=10, è possibile ricavare da tabella $k=z_{\alpha/2}=2{,}65$ per approssimazione al valore più prossimo al valore esatto $\Phi(z)=1-\frac{\alpha}{2}=0{,}996$. Ne risultano i seguenti limiti di controllo: Carta \bar{X} :

$$LCS = \mu + k \frac{\sigma}{\sqrt{n}} = 8,04 + 2,65 \frac{0,02}{\sqrt{10}} = 8,057 \text{ mm}$$

 $LCS = \mu = 8,04 \text{ mm}$

$$LCI = \mu - k \frac{\sigma}{\sqrt{n}} = 8,04 - 2,65 \frac{0,02}{\sqrt{10}} = 8,023 \text{ mm}$$

e. Limiti di controllo della carta R

Essendo $\alpha = 0.0027$, da tabella per n = 10 si ricava $D_2(10) = 5.469$, $D_1(10) = 0.687$ e $d_2(10) = 3.078$, da cui i limiti della carta di controllo R risultano:

$$LCS = D_2(10)\sigma = 5,469 \cdot 0,02 = 0,109 \text{ mm}$$

 $LC = d_2(10)\sigma = 3,078 \cdot 0,02 = 0,062 \text{ mm}$
 $LCS = D_1(10)\sigma = 0,687 \cdot 0,02 = 0,014 \text{ mm}$

QUESITO 3 DEFORMAZIONE

a) Fucinatura a stampi piani con attrito.

Il diametro finale del cilindro si ricava tramite la relazione di conservazione del volume, ipotizzata per le deformazioni in campo plastico.

$$A_0 \cdot h_0 = A_f \cdot h_f$$

Dove:

$$A_0 = \frac{1}{4}\pi d_0^2$$

$$A_f = \frac{1}{4}\pi d_f^2$$

Dal testo si ricava la relazione per calcolare h_f :

$$h_f = h_0 \cdot (1 - 0.2) = 32 \text{ mm}$$

Risulta quindi:

$$h_0 \cdot \frac{1}{4} \pi d_0^2 = h_f \cdot \frac{1}{4} \pi d_f^2$$

Da cui si ricava il diametro finale:

$$d_f = \sqrt{\frac{h_0 \cdot d_0^2}{h_f}} = \sqrt{\frac{40 \cdot 25^2}{32}} = 27,95 \text{ mm}$$

La deformazione reale si può ottenere dalle altezze finale ed iniziale:

$$\varepsilon = \ln^{h_f}/h_i = \ln^{32}/40 = -0.223$$

E lo sforzo associato:

$$\sigma = k\varepsilon^n = -315 \cdot 0,223^{0,54} = -140 \text{ MPa}$$

Il coefficiente di attrito fra cilindro e macchina forgiatrice si può ricavare dall'estensione del metodo del concio alla forgiatura di masselli cilindrici non vincolati dove la pressione media è:

$$p_{av} \approx \sigma \left(1 + \frac{\mu \cdot 2r}{3h} \right)$$

Sapendo che:

$$F = p_{av} \cdot A_f$$

Con:

$$A_f = \frac{\pi d_f^2}{4} = \frac{\pi 27,95^2}{4} = 613,592 \text{ mm}^2$$

Si ricava dunque:

$$F \approx Y \left(1 + \frac{\mu \cdot 2r}{3h} \right) \cdot A_f$$

Da cui si può isolare l'incognita di interesse:

$$\mu \approx \frac{(F - Y \cdot A_f) \cdot 3h}{Y \cdot A_f \cdot 2\frac{d_f}{2}} = \frac{(95000 - 140 \cdot 613,592) \cdot 3 \cdot 32}{140 \cdot 613,592 \cdot 27,95} = 0,36$$

b) Fucinatura in assenza di attrito.

L'energia specifica di deformazione si ottiene dalla formula:

$$u = \bar{Y}\varepsilon = \frac{k\varepsilon^{n+1}}{n+1} = \frac{k\left|\ln\left(\frac{h_f}{h_0}\right)\right|^{n+1}}{n+1} = \frac{315 \cdot \left|\ln\left(\frac{32}{40}\right)\right|^{1,54}}{1,54} = 20,3 \, MPa = 0,0203 \frac{J}{\text{mm}^3}$$

c) Fucinatura a rottura in assenza di attrito.

Il carico di rottura può essere visto come la tensione di flusso al momento della rottura del campione, si calcola quindi come

$$Y_R = k \cdot \varepsilon_{rottura}^n$$

Con

$$\varepsilon_{rottura} = \ln \frac{h_f}{h_i} = \ln \frac{31,84}{50} = -0,451$$

Risulta quindi

$$Y_R = k \cdot \varepsilon_{rottura}^{n} = -315 \cdot 0.415^{0.54} = -205 \text{ MPa}$$

QUESITO 4 ASPORTAZIONE

a. Calcolo vita utile per UA.

La vita utile dell'utensile segue la legge di Taylor:

$$v_c T^n = C$$

Tenendo conto delle due condizioni di lavoro note, ricaviamo il seguente sistema di equazioni:

$$\begin{cases} \ln v_1 + n \cdot \ln T(v_1) = \ln C \\ \ln v_2 + n \cdot \ln T(v_2) = \ln C \end{cases}$$

Ovvero:

$$\begin{cases} \ln 290 + n \cdot \ln 15 = \ln C \\ \ln 275 + n \cdot \ln 20 = \ln C \end{cases}$$

Si ricavano:

$$n = 0.185$$

 $C = 478.6$

Lavorando con $v_c = 280$ m/min, il signolo tagliente dell'inserto UA avrà una vita utile di:

$$T = \left(\frac{C}{v_c}\right)^{\frac{1}{n}} = \left(\frac{478.6}{280}\right)^{\frac{1}{0.185}} = 18.14 \text{ min}$$

b. Calcolo costo lavorazione per UB.

Il tempo per tornire un singolo pezzo è:

$$t_c = \frac{l}{f \cdot \frac{v_c}{\pi D}} = \frac{100}{0.4 \cdot \frac{275}{\pi \cdot 0.012}} = 0.034 \text{ min}$$

Dove $D = d_0 - 2 \cdot a_p = 20 - 2 \cdot 4 = 12$ mm è il diametro finale del pezzo.

La vita utile dell'inserto a velocità $v_c=275~\mathrm{m/min}$ sarà di $T=20~\mathrm{min}$ uti come da tabella 1.

Di conseguenza si può calcolare il costo per pezzo:

$$C_{pezzo} = C_{fisso} + C_{orario} \left(t_0 + t_c + \frac{t_c}{T} \cdot t_{cambio \ utensile} \right) + \frac{C_{inserto}}{4} \cdot \frac{t_c}{T}$$

$$C_{pezzo} = 0.5 + \frac{90}{60} \left(1 + 0.034 + \frac{0.034}{20} \cdot \frac{90}{60} \right) + \frac{4}{4} \cdot \frac{0.034}{20} = 2.06 \, \text{e}/pezzo$$

c. Verifica vincolo potenza.

La forza di taglio per l'utensile UA è:

$$F = k_{cs} \cdot a_p \cdot f^{1-x} \left(\frac{1}{\sin K} \right)^x = 650 \cdot 4 \cdot 0.4^{1-0.197} \left(\frac{1}{\sin 42^\circ} \right)^{0.197} = 1348 \, N$$

La potenza di taglio richiesta è quindi:

$$P_c = v_c \cdot F = \frac{290 \cdot 1348}{60} = 6517 W$$

 $P_c = v_c \cdot F = \frac{290 \cdot 1348}{60} = 6517 \, W$ La potenza disponibile al mandrino della macchina è: $P_e = 8.1 \, \mathrm{kW}$. Pertanto si rispetta il vincolo della potenza disponibile.