
14.1) 🖨 Impianti idraulici:

1/2. Elementi di base di un impianto:

- Tipologie impianti;
- Elementi che li costituiscono;
 - -> Materiali.

-> Reti idriche > tipologie:

- Antincendio;
- Acqua potabile;
- Acque ad uso industriale;
- Raccolta acque reflue;
- -> Elementi che costituiscono un impianto:
 - Tubazioni;
 - Giunti, raccordi e guarnizioni;
 - Organi di intercettazione e regolazione;
 - Accessori vari (manometri, misuratori di portata);
 - Pompe.

-> Materiali:

- -> Fa riferimento alla presenza:
 - o Saldature;
 - Coibentazione;
 - Rivestimento protettivo;
- -> La scelta del materiale è fatta in funzione delle caratteristiche chimico-fisiche del fluido e delle condizioni ambientali:
- Acciaio (╬ Comune; X Corrosione -zincatura o catramina-);
- Rame (tubi piccoli; trasporto; lavorabilità);
- Materie plastiche (Flessibilità, leggerezza, elasticità, no corrosione, minori perdite, rapidità posa);
- Ghisa (i reti scarico, in disuso);
- Cemento.

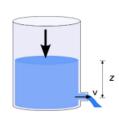
2/2.Richiami all'idraulica:

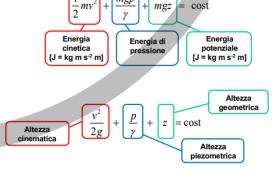
- Equazione di Bernoulli;
- Velocità torricelliana;
- Unità di misura;

Equazione di Bernoulli:

v: velocità [m/s];

-> **DEF**:


$$\frac{v^2}{2g} + \frac{p}{\gamma} + z = cost [m];$$


- - g: accelerazione di gravità $[m/s^2]$ 9,806 m/s^2
 - p: pressione $[N/m^2 \ ossia \ Pascal]$ Oppure $[kg_P/m^2]$
 - γ : peso specifico $[N/m^3]$ oppure $[kg_P/m^3]$ pari a 1000 per l'acqua
 - z: altezza del liquido [m]
- -> DIM pag 1Dim.

Velocità torricelliana:

-> **DEF**: Nell'ipotesi di libera atmosfera:

$$p_{realtiva} = 0 \Rightarrow \frac{v^2}{2g} = \Delta z \Rightarrow v = \sqrt{2g\Delta z};$$

14.2) 🖨 Impianti idraulici:

Unità di misura della pressione:

- Pascal (Pa);
- Bar;
- N/cm^2 ;
- Ata = kg_P/cm^2 ;

da	Pa	Bar	N/cm²	kg/cm²	atm	m colonna H ₂ O
Pa	1	10-5	10-4	1,02 x 10 ⁻⁵	0,987 x 10 ⁻⁵	1,02 x 10 ⁻⁴
bar	10 ⁵	1	10	1,02	0,9869	10,2
N/cm ²	104	0,1	1	0,102	0,09869	1,02
kg/cm ²	98,1 x 10 ³	0,981	9,81	1	0,9678	10,0007
atm	101.325	1,013	10,13	1,033	1	10,333
m colonna H ₂ O	9,81 x 10 ³	0,0981	0,981	0,09999	0,0968	1

La pressione atmosferica corrisponde a circa una colonna di 10 m di acqua

Le perdite di carico:

-> **DEF**: resistenza all'avanzamento di un fluido in un condotto (che si traduce in una perdita di energia) dovuta all'attrito del fluido sulla superficie interna del condotto e alle interazioni tra le molecole all'interno del fluido stesso.

-> Tipologie:

- Distribuite;
- Localizzate;
- Lunghezza equivalente;

▲ Esistono differenti modelli di approssimazione delle perdite, se ne presenta uno adatto agli scopi del corso.

Distribuite:

-> MODELLO:

$$\Delta p_{distribuita} = 0.0375 * \frac{f * l * G^2}{\rho * D^5};$$

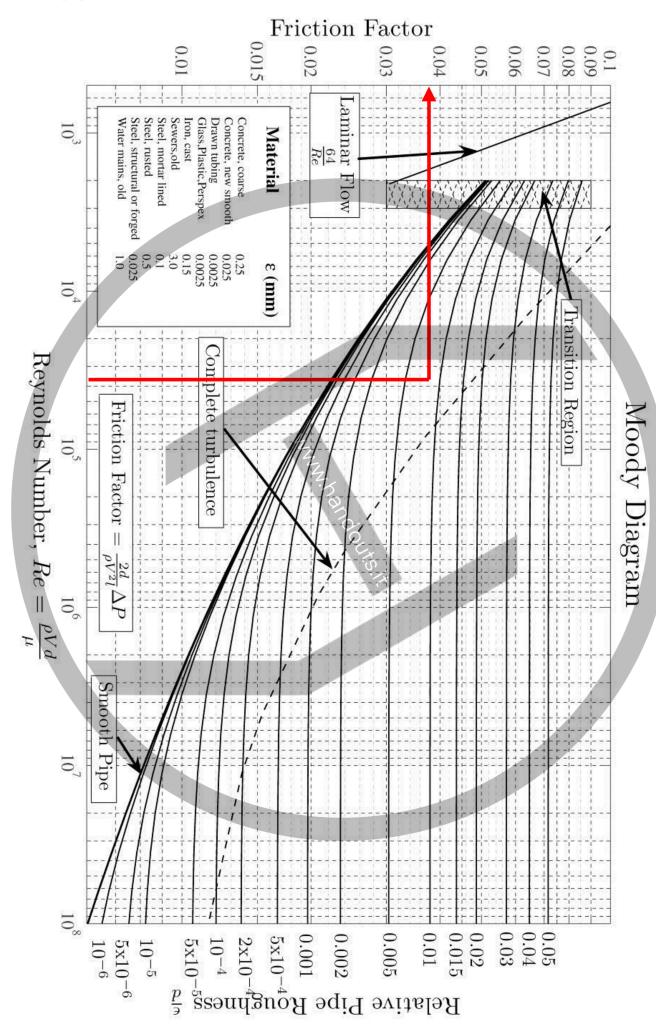
- $\Delta p_{distribuita}$: perdita di carico distribuita [Pa];
- f: coefficiente di attrito adimensionale variabile con la natura, la temperatura e la velocità del liquido e con natura e lo stato del materiale del tubo;
- I: lunghezza del condotto [m];
- G: portata in massa $[kg_m/s]$;
- ρ : densità del fluido $[kg_m/m^3]$;
- D: diametro del tubo [m];
- μ : viscosità assoluta del fluido [$kg_m/m*s$];

Coefficiente d'attrito:

-> Il coefficiente d'attrito f fa riferimento al numero di Reynolds, in base al suo valore definiamo la tipologia di moto del fluido: LAMINARE O TURBOLENTO.

-> **DEF** n° **Reyolds**:

$$Re = \frac{\rho * v * D}{u}$$


- Re < 2000 => moto LAMINARE => $f = \frac{64}{Re}$;
- $Re \ge 2000$ => moto TURBOLENTO => si fa riferimento al grafico di Moody; -> Calcolo rugosità relativa: $\varepsilon_R = \varepsilon_A/D$;

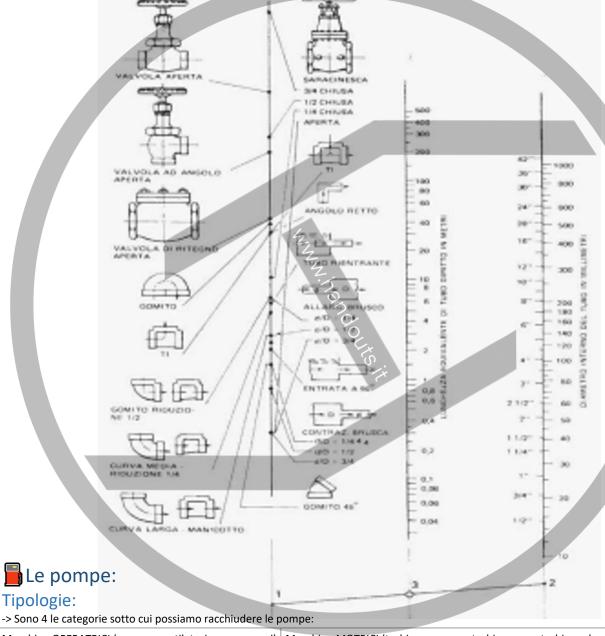
-> R: Relativa, A: Assoluta.

Rugosità assoluta per vari materiali:

Materiale	ε [m]		
Acciao	4,6·10 ⁻⁵		
Acciaio zincato	1,5·10 ⁻⁴		
Ghisa	2,6·10 ⁻⁵		
Ghisa bitumata	1,2·10 ⁻⁴		
Cemento	$0.3 \cdot 10^{-3} \div 3 \cdot 10^{-3}$		

14.3) 🖨 Impianti idraulici:

14.4) 🚅 Impianti idraulici:


Distribuite:

-> MODELLO:

$$\Delta p_{localizzata} = \mathcal{E} * \frac{v^2}{2g} * \gamma * 9,806 = 4,906 * \gamma * \mathcal{E} * \frac{v^2}{g};$$

- $\Delta p_{localizzata}$: perdita di carico localizzata [Pa];
- \mathcal{E} : coefficiente adimensionale di perdita di carico (tipico dell'elemento considerato);
- v : velocità media del fluido entro il condotto [m/s];
- γ : peso specifico del fluido [kg_p/m^3]
 - -> Se espresse in metri di colonna di fluido: $\Delta z_{localizzata} = \mathcal{E} * \frac{\mathrm{v}^2}{2\mathrm{g}};$

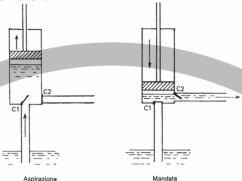
⚠ Spesso, per calcolare le perdita di carico localizzate, si ricorre alla **lunghezza equivalente**, la quale permette di calcolare la perdita localizzata come una perdita distribuita.

Macchine OPERATRICI (pompe, ventilatori, compressori) Macchine MOTRICI (turbine a vapore, turbine a gas, turbine ad acqua)

Macchine VOLUMETRICHE Macchine DINAMICHE (o a flusso continuo)

**Quest'ultima categoria dipende da come le macchine scambiano energia con il fluido.

VOLUMETRICHE	DINAMICHE	
Alternative - Stantuffo; - Membrana;	A effetto speciale: - Ad aria compressa; - A vapore; - A pressione d'acqua;	
Rotative: - Ingranaggi; - A vite; - A lobi;	Rotodinamiche: - Assiali; - Radiali;	

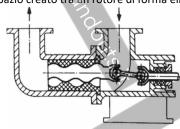

14.5) 🖨 Impianti idraulici:

VOLUMETRICHE:

- -> Agiscono operando ciclicamente il riempimento di un "volume" tramite il movimento alternativo o rotativo di uno o più organi.
 - Sono solitamente più grandi.


Pompe alternative:

- -> Funzionamento: grazie ad un moto alternativo di uno stantuffo all'interno di un cilindro muovono l'acqua.
 - Elevati livelli di prevalenza;
 - Elevata pressione di mandata;
 - Si distinguono in aspiranti e aspiranti-permanenti.


Pompe rotative > a ingranaggi:

- -> Funzionamento: il moto avviene secondo tre fasi successive:
 - 1. Creazione volume in espansione nella zona di ingresso, il liquido viene catturato dai lobi in rotazione;
 - 2. Il fluido entra nella cassa, senza passare tra gli ingranaggi.
 - 3. Il movimento degli ingranaggi forza il fluido sotto pressione nella zona di scarico.

Pompe rotative > a vite:

-> Funzionamento: il fluido viene trasportato nello spazio creato tra un rotore di forma elicoidale e il corpo della pompa.

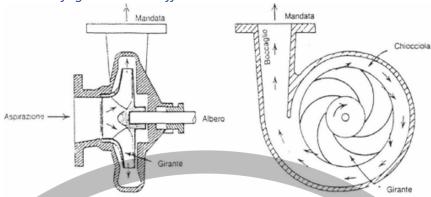
Pompe rotative > a lobi:

- -> Funzionamento: simile a quelle a ingranaggi, ma a differenza di questi, i lobi non sono a contatto durante il moto.
- -> Caratteristiche:
 - Grande efficienza;
 - Resistenza e affidabilità;
 - Facilità di conduzione e manutenzione.

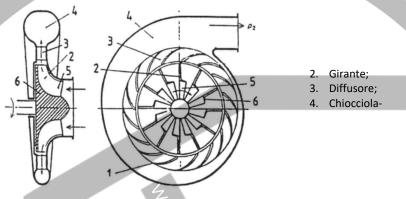
DINAMICHE:

-> La cessione di energia avviene per aumento della quantità di moto fornito da un fluido o generato dalla superficie delle palette rotanti e dall'accelerazione tangenziale che il fluido riceve

Pompe a effetto speciale:


- -> Un fluido (acqua, aria o vapore) agisce direttamente sul liquido senza l'interposizione di qualche elemento intermedio e senza parti in movimento.
 - Sono dette pompe statiche.

Pompe rotodinamiche:


- -> **DEF**: sono molto versatili ed elastiche.
 - Campo di applicazione molto vasto (80-85% del mercato).
 - Sottoclasse delle rotodinamiche sono le pompe centrifughe...

14.6) 🖨 Impianti idraulici:

Pompe rotodinamiche > centrifughe > senza diffusore:

Pompe rotodinamiche > centrifughe > con diffusore:

Grandezze di riferimento:

-> Vediamo le varie grandezze di riferimento:

La Prevalenza:

- -> DEF1 ENERGIA: incremento di energia riferito ad un chilogrammo-peso di fluido tra aspirazione (ingresso) e la mandata (uscita) della pompa.
 - Grazie all'equazione di Bernoulli è possibile esprimerla come:

$$h = \frac{p_u - p_i}{\rho * g} + \frac{v_u^2 - v_i^2}{2g} + (z_u - z_i);$$

- p_i, p_u : pressione del fluido all'ingresso e all'uscita della poma;
- v_i, v_u : velocità del fluido all'ingresso e all'uscita della pompa;
- z_i, z_n : quota della bocca di aspirazione e di mandata della pompa;
- ρ : densità del fluido kg_m/m^3 ;
- -> **DEF2 ALTEZZA**: altezza (o quota) che il liquido è in grado di raggiungere: $h = \frac{p}{\gamma}$ con γ : peso specifico del fluido;

h non dipende dal fluido.

La Prevalenza manometrica: h_m

-> DEF: Differenza di pressione tra l'aspirazione e la mandata della pompa (altezza totale che la pompa deve superare).

La portata: G

-> DEF: Massa o volume elaborato dalla pompa (misurato alla mandata) per unità di tempo.

-
$$\left[\frac{m^3}{s}\right]$$
 oppure $\left[\frac{kg}{s}\right]$

La Potenza: P

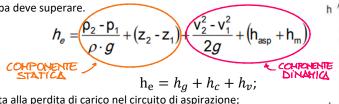
-> DEF: Si fa riferimento alla potenza assorbita dalla pompa e non a quella assorbita dal motore che la aziona.

$$P = \frac{Portata*Pressione}{Rendimento} = \frac{G*\Delta p}{n};$$

Con $\eta = rendimento = \frac{Potenza\ resa\ al\ fludio}{Potenza\ assorbita\ dalla\ pompa}$, che tiene conto di...

- Perdite idrauliche;
- Perdite volumetriche;
- Perdite al disco;
- Perdite meccaniche.

Le curve caratteristiche:

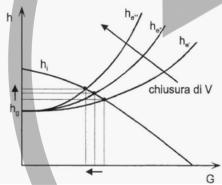

- -> Le condizioni di funzionamento di un impianto idraulico dipendono sia dalla richiesta delle utenze che dalle curve caratteristiche del circuito di distribuzione e della pompa.
- Individuare il punto di funzionamento dato dalla loro intersezione (SE ESISTE).

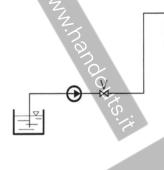
PUNTO DI FUNZIONAMENTO: valore di portata del liquido e di prevalenza (o pressione) della pompa, dal quale si può ricavare la potenza assorbita della pompa.

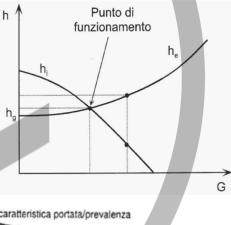
14.7) 🖒 Impianti idraulici:

Caratteristica esterna:

- -> DEF: Esprime il compito di una pompa: la prestazione che deve fornire per permettere il pompaggio del liquido:
 - => È l'altezza totale che la pompa deve superare.


- h_{asp} = prevalenza dovuta alla perdita di carico nel circuito di aspirazione;
- h_m = prevalenza dovuta alla perdita di carico nel circuito di mandata;
- h_{circuito} = hasp + hm = prevalenza dovuta alla perdita di carico complessiva;
- h_a : altezza geodetica totale;
 - -> $h_g=h_{g\,1}+h_{g\,2}$ (altezza geodetica di aspirazione + altezza geodetica di mandata);
 - $z_{girante} z_1 > 0$: pompa installata <u>in aspirazione</u> -> $h_g = z_2 - z_1$ differenza tra quota del punto di mandata e quella del punto di aspirazione o di presa;
 - -> Componente statica;
- h_v: altezza dinamica (dovuta alla differenza di pressione totale del liquido fra il serbatolo di mandata e quello di presa);
 - $-> h_v = \frac{p_2 p_1}{}$:
 - -> Componente statica.
- h_c : prevalenza di circuito, prevalenza dovuta alla portata di carico effettivo.
- $->h_c=h_{asp}+h_m$ (somma delle prevalenze dovute alle perdite di carico nel circuito di (aspirazione + mandata) ;


-> Dipende da:


- Perdite di carico (dissipazione di energia nel circuito);
- Variazione di quota (altezza-mandata);
- Differenze di pressione tra i due serbatoi.

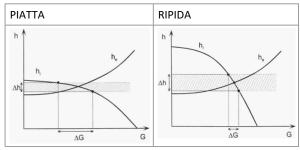
Regolazione della caratteristica esterna (tipo dissipativo):

-> Si regola la portata della pompa con valvola a valle della pompa (mai a monte)

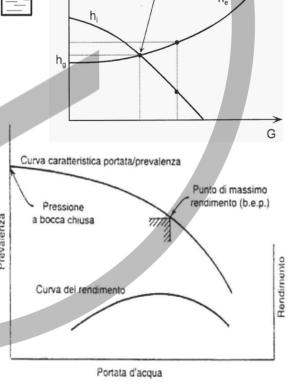
h_e(G)

- z₁ < 0: pompa installata sotto battente

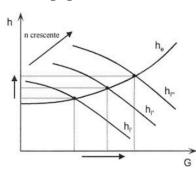
- Caratteristica interna:


 -> DEF: indica l'altezza alla quale la pompa è in grado di sollevare il liquido in funzione della portata elaborata.

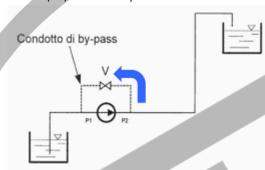
 È DATA (determinata in via sperimentale).

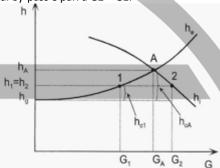

- tipo di girante;
- profilo delle pale;
- diametro girante (D e);
- velocità di rotazione n

e non dal fluido elaborato.


Regolazione della caratteristica interna:

- -> Data la pompa, il parametro su cui si agisce è la sua velocità di rotazione n attraverso:
 - variatori di velocità meccanici o con giunto idraulico,
 - motori elettrici a velocità variabile con sistemi di controllo elettronici.


14.8) 🚅 Impianti idraulici:



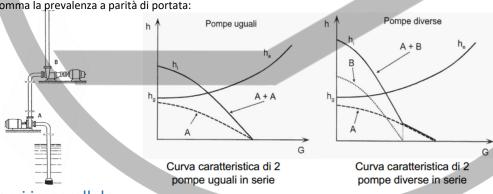
I primi portano a una riduzione del rendimento, mentre con i secondi rimane quasi costante; tuttavia per limitate variazioni di velocità l'eventuale peggioramento del rendimento non è molto significativo.

Regolazione della caratteristica interna (by-pass):

- -> CHIUSA: Se la valvola V è chiusa la portata nel condotto di by-pass è nulla
- -> APERTA: Quando si apre la valvola, poiché la pressione p2 (mandata) è maggiore di p1 (aspirazione) una parte della portata elaborata dalla pompa percorre in senso antiorario il condotto e quindi viene fatta ricircolare.
- -> In pratica la pompa elabora una portata (G2) superiore rispetto a quando la valvola V era chiusa (GA), ma al serbatoio di mandata viene inviata una portata minore (G1). Pertanto la portata che attraversa il condotto di by-pass è pari a G2 – G1.

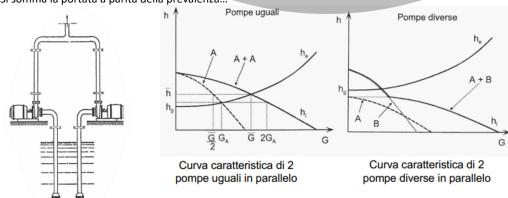
Leggi di affinità:

$$G = \overline{G} \cdot \left(\frac{n}{\overline{n}}\right)$$


$$\Delta p = \overline{\Delta p} \cdot \left(\frac{n}{\overline{n}}\right)^2$$

$$P = \overline{P} \cdot \left(\frac{n}{\overline{n}}\right)^3$$

Sistemi in serie e in parallelo:


Sistemi in serie:

-> Si somma la prevalenza a parità di portata:

Sistemi in parallelo:

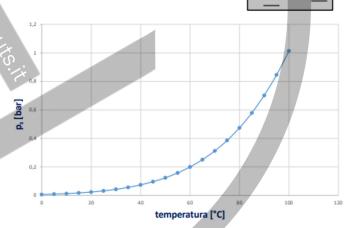
-> Si somma la portata a parità della prevalenza..

14.9) 🖨 Impianti idraulici:

Il fenomeno della cavitazione:

-> DEF: fenomeno della vaporizzazione locale di un liquido.

Quando la pressone assoluta di un punto della massa liquida uguaglia o scende sotto la tensione di vapore del liquido a quella temperatura, si formano delle bolla di vapore (ebollizione).

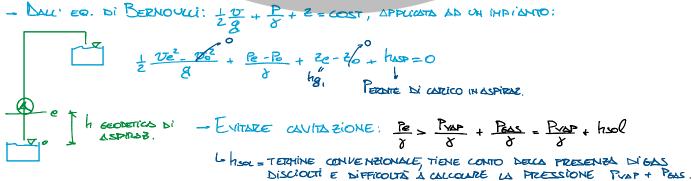

- L'abbassarsi della pressione determina la separazione dal liquido dei gas e la vaporizzazione del liquido stesso.
- Le bolle di vapore che si formano danno luogo alla formazione di onde di pressione ad alta intensità e frequenza con elevatissimi aumenti locali di pressione (fino 4 000 bar) e di temperatura (fino 800°C).
- -> Nelle pompe la cavitazione si manifesta tramite:
 - Alterazioni delle caratteristiche funzionali:
 - Forte rumorosità;
 - Vibrazioni;
 - Emissioni luminose nel caso vengano raggiunte temperature molto elevate;
 - Accumulazione di vapori e gas con possibile interruzione del flusso.

Criterio NPSH (Net Positive Suction Head):

- -> Esiste una verifica per ovviare il fenomeno della cavitazione è necessario che: $NPS_D > NPSH_R$;
 - $NPSH_R$: pressione (prevalenza) minima [Richiesta] che la pompa richiede all'aspirazione perché la portata di un liquido, con energia cinetica $\frac{v^2}{2} * g$, attraversi la pompa con una perdita di pressione Δh_c , mantenendo una pressione residua superiore alla tensione del vapore.
 - -> è una caratteristica intrinseca della pompa, viene indicato dal costruttore.
 - NPSH_D: pressione (prevalenza) netta disponibile [Disponibile], per via delle caratteristiche di impianto, ambiente e liquido, in corrispondenza dell'aspirazione della pompa
- -> NPSH = Prevalenza netta necessaria all'ingresso della pompa per avere cavitazione all'interno della pompa stessa.
 - Convenzionalmente l'NPSH di inizio cavitazione corrisponde a una caduta pari al 3% della prevalenza della pompa rispetto all'assenza di cavitazione.
 - Il margine di sicurezza tiene conto delle condizioni di funzionamento reali delle pompe: $S_a = rac{NPSH_D}{NPSH_R}$
 - -> Per l'acqua dolce e non incrostante si assume $S_a=1,1$;

Tabella di pressione di equilibrio tra liquido e vapore:

t [°C]	p _s [bar]	t [°C]	p _s [bar]
0,01	0,006112	55	0,1574
5	0,008719	60	0,1992
10	0,01227	65	0,2501
15	0,01704	70	0,3116
20	0,02337	75	0,3855
25	0,03166	80	0,4736
30	0,04242	85	0,5780
35	0,05628	90	0,7011
40	0,07375	95	0,8453
45	0,09593	100	1,01325
50	0,1233		


 h_{g1}

NPSH_R

Come ridurre il rischio cavitazione:

- AUMENTARE *NPSH*_D=> si riduce l'altezza geodetica di aspirazione e la tensione di vapore, le perdite di carico e la tensione di vapore del liquido raffreddandolo oppure aumentando la pressione di alimentazione.
- DIMINUIRE $NPSH_R$ => si utilizzano pompe a bassa velocità di rotazione, giranti a doppia aspirazione e giranti a elevato sviluppo della superficie delle pale (oppure installando un inducer).

Dimostrazione del NPSH:

14.10) 🖒 Impianti idraulici:

=> NPSHD =
$$\frac{Ve^2}{8} + \frac{1}{4}hc$$

=> NPSHD = $\frac{Re}{8} - \left(\frac{Re}{8} + hsol + hg_1 + hase\right)$

 Δh_c : descrive la caduta di pressione, in termini di altezza di liquido, tra la sezione finale del condotto di aspirazione e il punto a minore pressione all'interno della pompa.

$$\frac{P_0}{8} = \frac{1.600}{1000} = \frac{100}{100} =$$

• has
$$r = 0.033 6^2 \text{ [fim]}$$

• PVAP => PVAP ($T = 12^{\circ}\text{C}$) = $1417.8 \text{ [Pe]} => \frac{1242}{0} = 0.144$
• $\frac{11-0.01227}{0.01704-0.01227} = \frac{12-10}{15-10} = 0.014178 \text{ box}$

1 DTM = 101:325 Pa

14.11) **♣** Impianti idraulici:

ZINCATURA: La zincatura è il processo con cui viene applicato un rivestimento di zinco su un manufatto metallico generalmente di acciaio per proteggerlo dalla corrosione galvanica: esso infatti limita la formazione di micro-celle elettrolitiche ad azione anodica nei bordi di grano.

