
7.1P) 💸 Variabili economiche:

Costi totali:

Costi totali: $C_{acquisto} + C_{manutenzione} + C_{generazione}$;

- Cacquisto: Costo di acquisto del generatore (C di investimento), calcolato/txt;
- Cmanutenzione: Costo di manutenzione (C. esercizio, legge: economia di scala), calcolato;
- Caenerazione: Costo di generazione (C. esercizio), calcolato;
- -> Nel caso va aggiunto il costo del Buffer (C. di investimento);

Costo di acquisto:

-> **DEF**:

$$C_{Acq} = C_0 * \left(\frac{P^0}{P_0}\right)$$

- \diamond C_0 : Costo (txt, economia di scala);
- ♦ P: Media pesata della produzione (♠ media produzione);
- \diamond P_0 : Produzione (txt, economia di scala);
- ♦ n: coefficiente dato;
- Costo di investimento;

Costo di manutenzione:

-> **DEF**:

$$C_M = C_0 * \left(\frac{p^0}{P_0}\right)$$

- \diamond C_0 : Costo (txt, economia di scala);
- P: Media pesata della produzione (media produzione);
- ♦ P₀: Produzione (txt, economia di scala);
- ♦ n: coefficiente dato;
- Di solito descritto da un'economia di scala di cui vengono dati $C_0 \, \, {
 m e} \, n$;
- Costo di Esercizio.

Calcolo media pesata produzione:

- -> Per ricavare la media pesata della produzione dati: Orario, Fabbisogno orario (prodotti A, B):
 - 0. Calcolo ΔT ∀ fascia oraria;
 - 1. Sommo $\Delta T_i = \Delta T_{tot}$;
 - 2. Calcolo la MEDIA PESATA fabbisogno del singolo GENERATORE: $P_A = \frac{\sum_i \Delta T_i * Fabb_{A,i}}{\Delta T_{tot}};$
 - 3. Nel caso siano presenti perdite ($\eta < 1$) devo calcolarmi la potenza effettiva del generatore, tale è pari a: $P_{A,eff} = P_A/(1-(1-\eta)*\blacksquare);$
 - ■: pari al numero di perdite (esempio: rendimento di distribuzione=0.98 per ogni 10 m e distanza=80m
 - 4. Sommo le Produzioni effettive: $P_{TOT,eff} = P_{A,eff} + P_{B,eff} + \cdots$

Costo di generazione:

- -> Possiamo calcolare i costi di generazione tracciando la retta sul grafico X=UdS/h; Y=UdS/€ (se dato come variabile linearmente, con estremi di riferimento):
 - 0. Impostiamo il grafico;
 - 1. Calcoliamo il costo di generazione unitario data la media pesata della produzione:
 - a. $\frac{\Delta y_A}{\Delta x_A} = \frac{\Delta y_B}{\Delta x_B} \iff \frac{y_2 y_1}{x_2 x_1} = \frac{y y_1}{x x_1} \Rightarrow ricaviamo \ y \ (x);$ b. Poniamo $x = P_{TOT, \, eff}$ e ricaviamo $y = C_{gen, unit};$
 - 2. Ricaviamo il costo di generazione totale: $C_{gen}\left[\mathfrak{E}/\mathrm{anno}\right] = C_{gen,unit} * P_{TOT,eff} * \left[\frac{gg}{anno}\right] * \left[\frac{h_{prod}}{gg}\right];$
 - POV economico: il costo di generazione CAMBIA (negli anni), negli esercizi assumiamo che sia statico per semplicità.

7.2P) 💸 Variabili economiche:

Calcolo NPC (Net Present Cost):

-> **DEF**:

$$NPC = C_{Acq} + C_{Buff}^* + (C_M + C_{Gen}) * PV_a;$$

$$\Box C_{Buff}^* : \text{Costo del buffer (*: potrebbe non essere presente)}$$

- Prendiamo i costi positivi.
- Possiamo calcolarlo quando non ci sono ricavi;
- Si calcola se NPV<0.

Definizione Vita Utile:

-> **DEF**: La VITA UTILE di un impianto è la parte di vita di un impianto che termina con la sua obsolescenza, ovvero quando l'impianto non è più in grado di produrre a costi competitivi.

=> VITA UTILE = $\sum_{t=1}^{T} t : R_t - C_t \ge 0$;

(termina l'anno in cui i Ricavi sono minori dei Costi)

Calcolo NPV:

- 1. Calcolo ammortamenti: $amm = \frac{I_{tot}}{\# rate}$
 - # rate: numero di anni dell'investimento (Orizzonte temporale).
- 2. Calcolo Tassazione:
 - 1.1 Calcolo imponibile: $(R_t C_t amm)$,

 \bigwedge \bigwedge All'ultimo anno di VITA UTILE è pari a: $(R_t - C_t - amm + Valore \ Residuo); <math>\bigwedge$ \bigwedge

- -> Valore Residuo = $I_0 \sum_{t}^{Vita\ Utile}$ amm;
- 1.2 Calcolo Tasse: $TX_t = C_{fig,t} = (R_t C_t amm)^* * \%TX;$
 - Se $R-\mathcal{C}<0$ => NO PAGO TX (Credito d'imposta).
 - È un costo figurato: C_{fig} ;
- 3. Calcolo NPV annuo:
 - 3.1 Calcolo Present Value Specifico: $PV_{SP,t} = \frac{1}{(1+k)^t}$ (attualizzazione);
 - 3.2 Calcolo Flussi Cassa_t: $CF_t = R_t C_t TX_t$;
 - 3.3 Attualizzo CF: $CF_{t,attualizzato} = CF_t * PV_{SP,t}$;
 - 3.4 Calcolo Valore Residuo fine vita utile: $VR = \sum (orizoznte\ temporale Vita\ Utile) * amm;$ -> Quote amm. Residue;
 - 3.5 Calcolo NPV_1: $NPV_1 = -I_0 + CF_{1,att}$;
 - \circ I_0 : investimento iniziale;
 - $\circ CF_{1,att} = R_1 C_1 C_{fig,1} + \frac{1}{(1+k)};$
 - $\circ \frac{1}{(1+k)^t}$: Present Value Specifico;
 - 3.6 Calcolo restanti NPV: $NPV_t = NPV_{t-1} + CF_{t,att}$;
 - $\circ CF_{t,att} = (R_t C_t TX_t) * \frac{1}{(1+k)};$
 - 3.7 Calcolo $NPV_T = PNV_{t-1} + CF_{t,att} + VR_{att}$;

Calcolo PBT:

$$\to PBT = (NPV_Z) + \frac{|NPV_Z|}{NPV_{Z+1} - NPV_Z};$$

- NPV_Z : ultimo anno in cui NPV < 0;